Math help desk- session (3)

Department of Electrical Engineering

OVERVIEW

- Determinants
- Inverse of a matrix
- Solving systems of linear equations.
- Eigenvalues and eigenvectors

Determinant of a Matrix

• Determinant is associated with **Square matrix**

•
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 \longrightarrow $Det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$

The determinant of a matrix may be negative , positive or zero.
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} ; det(A) = ad-bc.

• A=
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
; det(A)= (aei+bfg+cdh)-(ceg+bdi+afh)

EXAMPLES
• Ex:1
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 ;;; $|A| = ?$
• Ans= -2
• Ex:2 $A = \begin{bmatrix} 3 & -5 \\ 2 & 1 \end{bmatrix}$;;; $|A| = ?$
• Ans: A) -13 B) -7
C) 7 D) 13
• Ex:3 $A = \begin{bmatrix} 2 & -3 & 1 \\ 4 & 2 & -1 \\ -5 & 3 & -2 \end{bmatrix}$;;; $det(A) = ?$

Math helpdesk

Solution:

$$|A| = 2[2 \times (-2) - (-1) \times 3] - (-3)[4 \times (-2) - (-1) \times (-5)] + 1[4 \times 3 - 2 \times (-5)] = 2[(-4) - (-3)] + 3[(-8) - 5] + 1[12 - (-10)] = 2 \times (-1) + 3 \times (-13) + 1 \times 22 = -2 - 39 + 22 = -2 - 39 + 22 = -19$$

Ex:4 A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \dots$$

• $|A| = 0$ A is SINGULAR MATRIX

• ie; If the determinant is zero, the matrix is singular.....

Math helpdesk

5

Adjoint of a Matrix

- The matrix formed by taking the transpose of the cofactor matrix of the original matrix.
- The adjoint of matrix A is often written **adj A**.

• Ex:1 Find adj(A)? A=
$$\begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{bmatrix}$$

• Step 1: Find the minor of each element.

• Minor of a11,, M11=
$$a22$$
 $a23$ =(a22*a33) - (a23*a32)
a32 a33

$$M12 = a21 \quad a23 \quad =(a21*a33)-(a23*a31) \\ a31 \quad a33$$

Math helpdesk

• Matrix of Minor

[<i>M</i> 11	<i>M</i> 12	M13]
<i>M</i> 21	M22	M23
<i>M</i> 31	<i>M</i> 32	M33

• Step 2: Form Co-factor Matrix

$\lceil +M11 \rceil$	-M12	+M13
-M21	+M22	-M23
+M31	-M32	+M33

• Complete cofactor matrix and then find the transpose of the matrix.

Examples....

• Find Cofactor matrix of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$

Inverse of a Matrix

- What is the Inverse of a Matrix?
- $A^{-1} = Adj(A) / |A|$
- When you multiply a Matrix by its Inverse you get the Identity Matrix (I)

•
$$A \times A^{-1} = I$$

• $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

9

• The Inverse of A is A⁻¹ only when:

$$\bullet \mathbf{A} \times \mathbf{A}^{-1} = \mathbf{A}^{-1} \times \mathbf{A} = \mathbf{I}$$

• Sometimes there is no Inverse.....??????

• If the determinant is zero, the matrix is singular and does not have an inverse.

Math helpdesk

How do we calculate the Inverse?

•
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$EX:1 \quad A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}, , \text{Find A}^{-1}$$
$$A^{-1} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$

11

Examples

• What is the Inverse of a Matrix?

•
$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

• Ans:
$$\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$$

Λп

• What is the Inverse of a Matrix?

• A =
$$\begin{bmatrix} 7 & 4 \\ 2 & 1 \end{bmatrix}$$

• Ans: $\begin{bmatrix} -1 & 4 \\ 2 & -7 \end{bmatrix}$

Inverse of a 3X3 Matrix

• Step 1: calculating the Matrix of Minors,

• Step 2: Then turn that into the Matrix of Cofactors,

• Step 3: Form the Adjoint (Adjugate) matrix

• Step 4: Multiply that by 1/Determinant

Inverse of a 3X3 Matrix

0

• Ex:1
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$$

Inverse of a 3X3 Matrix

•
$$A = \begin{bmatrix} 5 & 3 & 7 \\ 2 & 4 & 9 \\ 3 & 6 & 4 \end{bmatrix}$$

• Ans:

$$\begin{pmatrix} \frac{2}{7} & -\frac{30}{133} & \frac{1}{133} \\ -\frac{1}{7} & \frac{1}{133} & \frac{31}{133} \\ -\frac{1}{7} & \frac{1}{133} & \frac{31}{133} \\ 0 & \frac{3}{19} & -\frac{2}{19} \end{pmatrix}$$

0.2857	-0.2256	0.0075
-0.1429	0.0075	0.2331
0	0.1579	-0.1053

Solution of simultaneous equations using the inverse matrix (MATRIX ALGEBRA)

Math helpdesk

Linear Equation

• A system of equations in which each equation is linear.

- For any linear system,
 - There is only one solution, Or
 - there are infinitely many solutions (consistent), Or
 - there are no solutions (inconsistent).
- It is possible to represent a system of simultaneous linear equations as a matrix equation.

Linear Equation

• We have one linear equation Ax = B; x is unknown and A & B are constants,,, then there are just three possibilities.

Conditions

- 1. $A \neq 0$ then $x=B/A = A^{-1} B$. Then the equation ax = b has a *unique solution* for *x*.
- 2. A = 0, B = 0 then the equation Ax = B becomes 0 = 0 and any value of x will do. There are *infinitely many solutions* to the equation Ax = B.
- 3. A = 0 and $B \neq 0$ then Ax = B becomes 0 = b which is a contradiction. In this case the equation Ax = B has no solution for x.

Linear Equation

• Ex:1 $2x_1 + 3x_2 = 5$ $x_1 - 2x_2 = -1.$

Solution: We have to form the equations as below

$$AX = B.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} ; X = \begin{bmatrix} x1 \\ x2 \end{bmatrix} ; B = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

then the solution is; $X = A^{-1} * B$

Step 1: check whether A^{-1} exists or not.....($|A| \neq 0$) Step 2: Find A^{-1} and solve the eqn

Ans:
$$x1 = 1, x2 = 1$$
.

1.Solve the following using the inverse matrix approach:

(a)
$$3x - 2y = 17$$

 $5x + 3y = 3$
Step : 1 $A = \begin{bmatrix} 3 & -2 \\ 5 & 3 \end{bmatrix}$; $X = \begin{bmatrix} x \\ y \end{bmatrix}$; $B = \begin{bmatrix} 17 \\ 3 \end{bmatrix}$

Step 2:
$$|A| = 9 - (-10) = 19; adj(A) = \begin{bmatrix} 3 & 5 \\ -2 & 3 \end{bmatrix}$$

 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$

$$inv(A) = \begin{bmatrix} 3/19 & 5/19 \\ -2/19 & 3/19 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = inv(A) * B = \begin{bmatrix} 3/19 & 5/19 \\ -2/19 & 3/19 \end{bmatrix} * \begin{bmatrix} 17 \\ 3 \end{bmatrix}$$

Math helpdesk

11/28/2016

1. Solve the following using the inverse matrix approach:

(a)
$$2x - 3y = 1$$

 $4x + 4y = 2$

Step :1
$$A = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$
; $X = \begin{bmatrix} x \\ y \end{bmatrix}$; $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Step 2:
$$|A| = 20$$
; $A^{-1} = 1/20 \left\{ \begin{bmatrix} 4 & 3 \\ -4 & 2 \end{bmatrix} \right\};$
 $X = \left\{ \begin{bmatrix} 4/20 & 3/20 \\ -4/20 & 2/20 \end{bmatrix} \right\} * \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$
(b) $2x - 5y = 2$ (c) e^{-4x}

$$(b) \quad 2x \quad 3y \quad 2$$
$$-4x + 10y = 1$$
$$(A^{-1} \text{ does not exist.})$$

$$6x - y = 0$$
$$2x - 4y = 1$$

2. Solve the following equations using matrix methods:
(a)
$$2x1 + x2 - x3 = 0$$

 $x1 + x3 = 4$
 $x1 + x2 + x3 = 0$

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} ; X = \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} ; B = \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$$

$$x1 = 8/3, x2 = -4, x3 = 4/3$$
(b) $x1 - x2 + x3 = 1$
 $-x1 + x3 = 1$
 $x1 + x2 - x3 = 0$
 $x1 = \frac{1}{2}; x2 = \frac{1}{2}; x3 = 1$

Eigen values & Eigen vectors

- Eigenvalues are a special set of scalars associated with a linear system of equations and known as characteristic roots.
- The basic equation is $Av = \lambda v$; λ is an eigenvalue of A and v is the eigen vector of A
- If $\lambda = 0, , Av = 0v$ and then eigen vector "v" is called "null space".

 λ is called Eigen value of a matrix "A" iff,, det(A- λI)=0

• Example 1: Determine the eigenvalues of the matrix $A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$

- First, form the matrix $A \lambda I$: $\begin{bmatrix} 1 \lambda & -2 \\ 3 & -4 \lambda \end{bmatrix}$
- Take the det $(A \lambda I)$: = $(1 \lambda)(-4 \lambda) [(-2)(3)] = 0$ = $\lambda^2 + 3 \lambda^2 + 2$; Which is called "CHARACTERISTIC POLYNOMIAL"
- The solutions of the characteristic equation, det($A \lambda I$) = 0, are the eigenvalues of A: $\lambda^2 + 3\lambda + 2 = 0$
- $(\lambda + 1) * (\lambda + 2) = 0$

$$\lambda = -1 \text{ or } -2$$

EXAMPLE 1: Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrrr} 1 & -3 & 3\\ 3 & -5 & 3\\ 6 & -6 & 4 \end{array}\right)$$

SOLUTION:

• In such problems, we first find the eigenvalues of the matrix.

FINDING EIGENVALUES

• To do this, we find the values of λ which satisfy the characteristic equation of the matrix A, namely those values of λ for which

$$\det(A - \lambda I) = 0,$$

where I is the 3×3 identity matrix.

• Form the matrix $A - \lambda I$:

$$A - \lambda I = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{pmatrix}.$$

Notice that this matrix is just equal to A with λ subtracted from each entry on the main diagonal.

• Calculate $det(A - \lambda I)$:

$$\begin{aligned} \det(A - \lambda I) &= (1 - \lambda) \begin{vmatrix} -5 - \lambda & 3 \\ -6 & 4 - \lambda \end{vmatrix} - (-3) \begin{vmatrix} 3 & 3 \\ 6 & 4 - \lambda \end{vmatrix} + 3 \begin{vmatrix} 3 & -5 - \lambda \\ 6 & -6 \end{vmatrix} \\ &= (1 - \lambda) \left((-5 - \lambda)(4 - \lambda) - (3)(-6) \right) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3(4 - \lambda) - 3) + 3(3(4 - \lambda) - 3(3(4 - \lambda) - 3) + 3(3(4 - \lambda) + 3(4 - \lambda) + 3(3(4 - \lambda) - 3) + 3(3(4 - \lambda) - 3) + 3(3(4 - \lambda) - 3) + 3(3(4 - \lambda) + 3(4 - \lambda) + 3(3(4 - \lambda) + 3(4 - \lambda) + 3($$

• Therefore

$$\det(A - \lambda I) = -\lambda^3 + 12\lambda + 16.$$

8/2016

- * Taking $\lambda = 4$, we find that $4^3 12.4 16 = 0$.
- * Now factor out λ − 4:

$$(\lambda - 4)(\lambda^2 + 4\lambda + 4) = \lambda^3 - 12\lambda^2 + 16.$$

* Solving $\lambda^2 + 4\lambda + 4$ by formula¹ gives

$$\lambda = \frac{-4 \pm \sqrt{4^2 - 4.1.4}}{2} = \frac{-4 \pm 0}{2},$$

and so $\lambda = -2$ (a repeated root).

• Therefore, the eigenvalues of A are $\lambda = 4, -2$. ($\lambda = -2$ is a repeated root of the characteristic equation.)

6.2 Eigenvalues: examples

Example 1: Find the eigenvalues of $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix} = (\lambda - 2)(\lambda + 5) + 12$$
$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

two eigenvalues: -1, -2

Example 2: Find the eigenvalues of

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$
$$\lambda = 2 \text{ is an eigenvector of multiplicity 3.}$$

Example 2: Find the eigenvectors of the 2 by 2 matrix

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
$$|\mathbf{A} - \lambda \cdot \mathbf{I}| = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0$$
$$\begin{bmatrix} -\lambda & 1 \\ -2 & -3 - \lambda \end{bmatrix} = \lambda^2 + 3\lambda + 2 = 0 \qquad \qquad \lambda_1 = -1, \lambda_2 = -2$$

Find eigen vectors of those eigen values.

$$\mathbf{A} \cdot \mathbf{v}_{1} = \lambda_{1} \cdot \mathbf{v}_{1}$$
$$(\mathbf{A} - \lambda_{1}) \cdot \mathbf{v}_{1} = 0$$
$$\begin{bmatrix} -\lambda_{1} & \mathbf{1} \\ -2 & -3 - \lambda_{1} \end{bmatrix} \cdot \mathbf{v}_{1} = 0$$
$$\begin{bmatrix} \mathbf{1} & \mathbf{1} \\ -2 & -2 \end{bmatrix} \cdot \mathbf{v}_{1} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ -2 & -2 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{1,1} \\ \mathbf{v}_{1,2} \end{bmatrix} = 0$$
$$\mathbf{v}_{1} = \mathbf{k}_{1} \begin{bmatrix} +\mathbf{1} \\ -\mathbf{1} \end{bmatrix}$$
Math helpdesk

11/28/2016

- $\mathbf{A} \cdot \mathbf{v}_{2} = \lambda_{2} \cdot \mathbf{v}_{2}$ $(\mathbf{A} \lambda_{2}) \cdot \mathbf{v}_{2} = \begin{bmatrix} -\lambda_{2} & 1 \\ -2 & -3 \lambda_{2} \end{bmatrix} \cdot \mathbf{v}_{2} = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{2,1} \\ \mathbf{v}_{2,2} \end{bmatrix} = \mathbf{0} \quad \text{so}$ $2 \cdot \mathbf{v}_{2,1} + 1 \cdot \mathbf{v}_{2,2} = \mathbf{0} \quad (\text{or from bottom line:} \quad -2 \cdot \mathbf{v}_{2,1} 1 \cdot \mathbf{v}_{2,2} = \mathbf{0})$ $2 \cdot \mathbf{v}_{2,1} = -\mathbf{v}_{2,2}$ $\mathbf{v}_{2} = \mathbf{k}_{2} \begin{bmatrix} +1 \\ -2 \end{bmatrix}$
 - Again, the choice of +1 and -2 for the eigenvector was arbitrary; only their ratio is important.

Example 3.1 (diagonal matrix): find the eigenvalues of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

We have

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 0 \\ 0 & 2 - \lambda \end{pmatrix}.$$

Hence, we can write the characteristic equation:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 0 \\ 0 & 2 - \lambda \end{vmatrix} = 0.$$

This gives $(1 - \lambda)(2 - \lambda) = 0$, and we find two eigenvalues of the matrix **A**: $\lambda = 1$ and $\lambda = 2$.

Example 3.2 (triangular matrix): find the eigenvalues of the matrix $\begin{pmatrix} 1 & 1 \end{pmatrix}$

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$
We have

$$A - \lambda \mathbf{I} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 1 \\ 0 & 2 - \lambda \end{pmatrix}.$$
Hence, the characteristic equation is

$$\det (A - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 1 \\ 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda) = 0$$
This gives two eigenvalues: $\lambda = 1$ and $\lambda = 2$.

Example 3.1 (diagonal matrix): find the eigenvalues of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

We have

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 0 \\ 0 & 2 - \lambda \end{pmatrix}$$

Hence, we can write the characteristic equation:

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 0 \\ 0 & 2 - \lambda \end{vmatrix} = 0.$$

This gives $(1 - \lambda)(2 - \lambda) = 0$, and we find two eigenvalues of the matrix **A**: $\lambda = 1$ and $\lambda = 2$.

Example 3.2 (triangular matrix): find the eigenvalues of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

We have

$$A - \lambda I = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 1 \\ 0 & 2 - \lambda \end{pmatrix}.$$

Hence, the characteristic equation is

det
$$(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda) = 0$$

This gives two eigenvalues: $\lambda = 1$ and $\lambda = 2$.

Math helpdesk

Matlab Examples.....

Polynomial method to solve for eigen values

>> p=poly(A)

p=1 -20 75------ characteristic polynomial. Roots of "p" > d=roots(p)d=15;5

The eigenvalues are the values of "d" matrix

33

Math helpdesk

Matlab Examples.....

"eye" function can be used to generate Identity matrix.
>>I=eye(3)

```
>A=[2 \ 3 \ -1; -1 \ 2 \ 3; \ 0 \ 1 \ 2]
A =
2 3 -1
-1 2 3
0 1 2
>> b=[-1 9 5]' or b=[-1; 9; 5];
b =
-1
9
5
>> x \equiv inv(A)*b
_{\rm X} =
-1
2
```

Thank you,,,,,

Math helpdesk