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 Inverse of a matrix 

 Solving systems of linear equations.

 Eigenvalues and eigenvectors



Determinant of a Matrix
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 Determinant is associated with Square matrix

 A = 
𝑎 𝑏
𝑐 𝑑

Det(A )=
𝑎 𝑏
𝑐 𝑑

 The determinant of a matrix may be negative , positive or zero.

 A = 
𝑎 𝑏
𝑐 𝑑

; det(A)= ad−bc.

 A=  

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

; det(A)= (aei+bfg+cdh)-(ceg+bdi+afh)



EXAMPLES
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 Ex:1        A= 
1 2
3 4

;;;   |A|=? 

 Ans= -2

 Ex:2        A= 
3 −5
2 1

;;;   |A|=?

 Ans:              A)    -13              B )    -7

C )    7                D)    13

 Ex:3       A=  
2 −3 1
4 2 −1
−5 3 −2

;;;  det(A)=?
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Solution:

|A|=

2[2 × (-2) - (-1) × 3] - (-3)[4 × (-2) - (-1) × (-5)] + 1[4 × 3 - 2 × (-5)]

= 2[(-4) - (-3)] + 3[(-8) - 5] + 1[12 - (-10)]

= 2 × (-1) + 3 × (-13) + 1 × 22

= -2 - 39 + 22

= -19

Ex:4   A=  
1 2 3
4 5 6
7 8 9

…

 |A|= 0                   A is SINGULAR  MATRIX

 ie;   If the determinant is zero,  the matrix is singular…..



Adjoint of a Matrix
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 The matrix formed by taking the transpose of the cofactor matrix of 

the  original matrix.

 The adjoint of matrix A is often written adj A.

 Ex:1   Find adj(A)? A= 𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

 Step 1:  Find the minor of each element.

 Minor of  a11,, M11= 𝑎22 𝑎23
𝑎32 𝑎33

=(a22* a33) – (a23*a32)

 M12= 𝑎21 𝑎23
𝑎31 𝑎33

=(a21*a33)-(a23*a31)
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 Matrix of Minor

 Step 2: Form Co-factor Matrix

 Complete cofactor matrix and then find the transpose of the matrix.

 Step 3: Adj(A)= (Co-factor Matrix)T

+𝑀11 −𝑀12 +𝑀13
−𝑀21 +𝑀22 −𝑀23
+𝑀31 −𝑀32 +𝑀33

𝑀11 𝑀12 𝑀13
𝑀21 𝑀22 𝑀23
𝑀31 𝑀32 𝑀33



Examples….
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 Find Cofactor matrix of A=
1 2 3
0 4 5
1 0 6



Inverse of a Matrix

11/28/201

6
Math helpdesk

9

 What is the Inverse of a Matrix?

 A-1 = Adj(A) /|A|

 When you multiply a Matrix by its Inverse you get the

Identity Matrix (I)

 A × A-1 = I

 I           =       
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏
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 The Inverse of A is A-1 only when:

A × A-1 = A-1 × A = I

Sometimes there is no Inverse…….??????

 If the determinant is zero, the matrix is singular and does not 

have an inverse. 



How do we calculate the Inverse?
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 A = 
𝑎 𝑏
𝑐 𝑑

A-1  =   
1

ad−bc
𝑑 −𝑏
−𝑐 𝑎

 EX:1     A = 
4 7
2 6

,,, Find A-1 

A-1  =   
1

10
6 −7
−2 4



Examples
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 What is the Inverse of a Matrix?

 A = 
3 1
5 2

 Ans:
2 −1
−5 3

 What is the Inverse of a Matrix?

 A = 
7 4
2 1

 Ans: 
−1 4
2 −7



Inverse of a 3X3 Matrix
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 Step 1: calculating the Matrix of Minors, 

 Step 2: Then turn that into the Matrix of Cofactors, 

 Step 3: Form the Adjoint (Adjugate) matrix

 Step 4: Multiply that by 1/Determinant



Inverse of a 3X3 Matrix
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 Ex:1 A=
1 2 3
0 4 5
1 0 6



Inverse of a 3X3 Matrix
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 A=
5 3 7
2 4 9
3 6 4

 Ans:

0.2857  -0.2256    0.0075

-0.1429  0.0075   0  .2331

0   0.1579   -0.1053
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Solution of  simultaneous equations 

using the inverse matrix

(MATRIX ALGEBRA)



Linear Equation
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 A system of equations in which each equation is linear.

 For any linear system,

 There is only one solution, Or

 there are infinitely many solutions (consistent), Or

 there are no solutions (inconsistent).

 It is possible to represent a system of simultaneous

linear equations as a matrix equation.



Linear Equation
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 We have one linear equation Ax = B ; x is unknown and A & B
are constants,,, then there are just three possibilities.

 Conditions
1. A ≠ 0 then x=B/A = A-1 B .Then the equation ax = b has a unique

solution for x.

2. A = 0, B = 0 then the equation Ax = B becomes 0 = 0 and any value
of x will do. There are infinitely many solutions to the equation Ax
= B.

3. A = 0 and B ≠ 0 then Ax = B becomes 0 = b which is a
contradiction. In this case the equation Ax = B has no solution for x.



Linear Equation
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 Ex:1                2x1 + 3x2 = 5

x1 − 2x2 = −1.

Solution:  We have to form the equations as below

AX = B.

A = 
2 3
1 −2

; X  =
𝑥1
𝑥2

; B =
5
−1

then the solution is;    X  = A_1*B

Step 1: check  whether A_1 exists or not……( |A| ≠ 0)

Step 2: Find A_1 and solve the eqn

Ans:      x1 = 1, x2 = 1.
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1.Solve the following using the inverse matrix approach:

(a)       3x − 2y = 17

5x + 3y = 3

Step :1                A = 
3 −2
5 3

; X  = 
𝑥
𝑦 ; B =

17
3

Step 2:  |A| =9-(-10)=19;   adj(A)= 
3 5
−2 3

inv(A)=
3/19 5/19
−2/19 3/19

𝑥
𝑦 = inv(A)*B            = 

3/19 5/19
−2/19 3/19

*
17
3

𝑥
𝑦 = 

3
−4
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1. Solve the following using the inverse matrix approach:

(a)       2x − 3y = 1

4x + 4y = 2

Step :1                A = 
2 −3
4 4

; X  = 
𝑥
𝑦 ; B =

1
2

Step 2:            |A|= 20  ;  A_1  = 1/20
4 3
−4 2

; 

X=
4/20 3/20
−4/20 2/20

*
1
2

𝑥
𝑦 = 

0.5
0

(b)         2x − 5y = 2                   (c)           6x − y = 0

−4x + 10y = 1 2x − 4y = 1
(A−1 does not exist. )
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2. Solve the following equations using matrix methods:

(a) 2x1 + x2 − x3 = 0

x1 + x3 = 4

x1 + x2 + x3 = 0

A = 
2 1 −1
1 0 1
1 1 1

; X  = 
𝑥1
𝑥2
𝑥3

; B =
0
4
0

x1 = 8/3, x2 = −4,   x3 = 4/3

(b)   x1 − x2 + x3 = 1

−x1 + x3 = 1

x1 + x2 − x3 = 0

x1 = ½  ; x2 = ½ ;   x3 = 1



Eigen values & Eigen vectors 
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 Eigenvalues are a special set of scalars associated with a 
linear system of equations and known as characteristic 
roots.

 The basic equation is Av  = λ v;    λ is an eigenvalue of  A 
and v is the eigen vector of A

 If  λ =0,,,Av=0v and then  eigen vector “v” is called “null 
space”.

λ is called Eigen value of a matrix “A” iff,, det(A- λI)=0
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 Example 1: Determine the eigenvalues of the matrix

A =
1 −2
3 −4

 First, form the matrix A − λ I:
1 − λ −2
3 −4 − λ

 Take the det( A − λ I): = (1 − λ)(−4 − λ) - [(−2)(3)]=0

= λ 2 + 3 λ +2; Which is called

“CHARACTERISTIC POLYNOMIAL”

 The solutions of the characteristic equation, det( A − λ I) = 0, are the

eigenvalues of A: λ 2 + 3 λ +2=0

 ( λ+1) * (λ+2)=0 λ = -1 or -2
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Example 1: Find the eigenvalues of

two eigenvalues:    1,  2  

Example 2: Find the eigenvalues of

λ = 2 is an eigenvector of multiplicity 3.
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6.2 Eigenvalues: examples
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Example 2: Find the eigenvectors of the 2 by 2 matrix
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Find eigen vectors of those eigen values. 

A =
0 1
−2 −3

λ1=-1, λ2=-2
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• Again, the choice of +1 and -2 for the eigenvector was

arbitrary; only their ratio is important.
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Matlab Examples……..
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MatLab :  eig(A)

>> A=[0 1;-2 -3]

A =

0   1

-2  -3

>> [v,d]=eig(A)

v =

0.7071  -0.4472

-0.7071   0.8944

d =

-1   0

0  -2

The eigenvalues are the diagonal of the "d" matrix

The eigenvectors are the columns of the "v" matrix.



Matlab Examples……..
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Polynomial method to solve for eigen values

>> A=[10  -5; -5  10]

A =

10   -5

-5     10

>> p=poly(A)

p= 1  -20  75-------- characteristic polynomial.

Roots of  “p”

>> d=roots(p)

d=15;5

The eigenvalues are the values of "d" matrix



Matlab Examples……..
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“eye” function can be used to  generate Identity matrix.

>> I=eye(3)

> A=[2  3  -1; -1  2  3;  0 1 2]

A =

2   3  -1

-1   2   3

0   1   2

>> b=[-1 9 5]' or b=[-1; 9; 5];

b =

-1

9

5

>> x=inv(A)*b

x =

-1

1
2



Thank you,,,,,
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