

Causal Inference and Its Limits

Professor Allen Hicken

What is Causality?

• Causality versus causal inference.

Causality: X is a cause of Y; Y is an effect of X (X is the *treatment*, Y is the effect)

Causal Inference: Can we infer X→Y from our sample?

Criteria for Establishing Causality

- 1. Correlation (Association)
- 2. Temporal Ordering
- 3. Theory (Causal Mechanisms and Counterfactuals)
- 4. Isolation (Rule out Confounds and Alternative Explanations)

Criterion #1. Correlation

- Two variables are "correlated" when changes in one variable occur together with changes in the other (Louise White)
 - Correlation is roughly synonymous with association and co-variance.
 - A correlation between two variables can be positive or negative.

Establishing Causality

- We observe: X correlates with Y
- 1. Causation is not involved at all
- 2. There is a causal link
- 3. Confounding (omitted) variable (Z) causes both X and Y

Look for Alternative Explanations

Criterion #2 Temporal Ordering

- The hypothesized cause (IV) must come before the effect (DV).
 - Rise in GDP/capita precedes rise in obesity in U.S.
 - Students decide whether or not to sit in the front of class before the get their final grade.
 - Or do they?
 - Social science has lots of tricky "chicken-and-egg" situations.

Criterion #3 Causal Mechanism

- You have to be able to tell a plausible story that connects the cause (IV) to the effect (DV)
 - This story often includes an "intervening variable" that gets us from the cause to the effect
 - Students who sit up front are able to hear better, see better, better comprehend the lecture, and are less tempted by distractions (plausible story)
 - Students who sit up front of the class bask in my aura and absorb more of my genius by just being close to me (not plausible)

Criterion #4 Isolation (Rule Out Alternative Explanations and Confounds)

 If there is a confounding variable that is causally prior to both a cause (IV) and an effect (DV), then the correlation we observe between the cause and the effect may be spurious.

Criterion #4 Isolation (Rule Out Confounds)

- If there is a confounding variable that is causally prior to both an cause and an effect, then the correlation we observe between the cause and the effect may be spurious.
- When it comes to causal inference this is perhaps the biggest challenge for non-experimental researchers.

The Fundamental Problem of Causal Inference

 Problem. We cannot rerun history to see whether changing the value of an independent variable would have changed the value of the dependent variable.

• Solution #1. Give up.

The Fundamental Problem of Causal Inference

- Solution #2. Design your research in a way that comes as close as possible to rerunning history.
 - Observe the effects of changes in one independent variable when all other independent variables remain the same, or
 - Measure other independent variables, then use statistical techniques to hold them constant.

Establishing Causality

- We observe: X correlates with Y
- 1. Causation is not involved at all
- 2. There is a causal link
- 3. Confounding variable causes both X and Y

Dealing with Confounding Variables

Control variables

- Holding potential confounding variables constant

- 3 possible outcomes when control for Z
 - Spurious relationship
 - Additive relationship
 - Interactive relationship

Cases weighted by weight variable to be use in spss

Examples

- Relationship between income and religiosity
 - Income \rightarrow higher attendance at religious services
 - What could be a confounding or control variable?

Spurious relationship

 After holding Z constant the causal connection between X and Y disappears

Spurious Relationship between Income and Frequency of Worship Attendance

Hi Income

Additive Relationship

• The control variable (Z) has a weak or nonexistent relationship with the IV (X) and a strong relationship with the DV (Z).

Spurious Relationship between Income and Frequency of Worship Attendance

Interactive Relationships

The relationship between the IV (X) and DV (Y) depends on the value of the control variable
(Z)

Spurious Relationship between Income and Frequency of Worship

Hi Income

Exercises

Each of following conclusions is based on a relationship between X and Y that could be spurious. For each one: (i) identify a plausible confounding variable (Z) for which you would ideally control, (ii) Briefly describe how Z might be affecting the relationship between X and Y.

- In Great Britain, the level of ice cream sales (X) and drowning deaths (Y) are strongly related; as sales go up, so do deaths from drowning. Conclusion: To save lives we should prohibit ice cream sales.
- 2. Car color (X) and accident rates (Y) are linked: Red cars are more likely to be involved in accidents than are non-red cars. Conclusion: If red cars are banned, the accident rate will drop.
- Women's education (X) and divorce rates (Y) are correlated: more educated women have a higher divorce rate than less-educated women. Conclusion: Education causes divorce.

Adapted from Pollock 2009

Exercise

- In groups of 3-4 review your hypotheses from yesterday
- What potential confounding variables can you identify as a group?
- How might they effect the relationship between your "X" and "Y" variables?

Sources

- Philip H. Pollock III. 2009. *The Essentials of Political Analysis.* CQ Press.
- W. Philips Shively. *The Craft of Political Research*. Pearson Prentice Hall.