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Ordinary Least Squares (OLS) 

Regression

• Dependent variable, Y, what we’re explaining.

• Explanatory variable or independent variable, X, 

what we are using to explain Y.

• When X goes up by a certain amount, on 

average, what happens to Y?  Does it go up, go 

down, or not change, and by how much? And 

how certain are we about this effect?



Scatterplots:  When X goes up, 

what happens to Y?
• Source:  Shively, 2005



Scatterplots

• Source:  Berry and Sanders



The predicted value of Y = a + bX

What does this equation draw?



The Regression Line

The predicted value of Y = 

intercept + slope * X

Y is the dependent variable

X is the explanatory variable



The Regression Line

Source: Wonnacott and Wonnacott, 1990.



The Regression Line

• Source:  Shively, 2005.



Scatterplot Exercise

• Source:  Schaeffer…



Some questions

• When x goes up by one unit, for which of these slides 
does y go down?

• If you were drawing a line to describe the points for the 
graphs where y goes down when x goes up, which would 
have the steeper slope?  For which one would y go down 
more as x goes up?

• Three of these have exactly the same coefficient on x.  
Which three? 

• The three have different correlations between x and y; 
which is higher, and which is lower?



Scatterplot Exercise, for later

• Source:  Scheaffer, …



Example

• Working in groups, graph the following results.

Earnings = -84078 + 1563*Height.

Graph the regression line.  Including all of the 
elements of the graph in the last PowerPoint 
slide.

Source:   Gelman and Nolan, “Teaching Statistics”.



Hints to get started

When will y = 0?   When x is about 54 inches.

Why?  0 = -84078 + 1563*x

0+84078 = -84078 + 84078 + 
1563*x

84078=0 + 1563*x.

84078= 1563*x.

84078/1563=(1563/1563)*x.

53.79 = x

Y is in US dollars.  X is in inches.



One more hint

What does one extra inch in height yield in 

terms of dollars of income?



Small piece of graph paper



Scatterplot of height and earnings

• Source:  Gelman and Nolan



How do we calculate a and b, the 

intercept (or constant) and the slope?

Minimize the sum of squared residuals.

Would use calculus and calculate partial 

derivatives with respect to a and b.

“But of all these principles, least squares is the 

most simple:  by the others we would be led into 

the most complicated calculations.”  

Gauss, 1809



Residual

A residual is the difference between our 

observation, y, and the predicted value of 

y from our model.  

We want the difference to be small.



Minimizing the Sum of Squared 

Residuals
• Source:  Shively, 2005.



Minimizing the vertical distance

• Source:  Berry and Sanders



After a lot of math, in the bivariate case, we 

would find that 

a=the mean of Y – b*the mean of X

And

b= the covariance of X and Y

the variance of X



Variance and Covariance

• Covariance describes  how X and Y vary 
together.  

• Variance describes  how much a variable varies 
around its mean.   

The variance of X, then, describes how much 
spread there is away from the mean of X.  We 
divide the squared distances by n or n-1 to get 
the average distance of the data from the mean.



We could do the math and calculate the 

coefficients, but we wouldn’t yet have the 

tools to draw inferences to data we don’t 

have.  

Without one more tool, all we have is a way 

to describe our data.  Without one more 

tool, we do not have a way to say how 

certain we are about that description.



Inference

Our challenge is that we are not describing a 
full population.

Instead, we are drawing an inference from a 
sample to describe a population.   

We need assumptions and tools from 
probability to allow us to draw these 
inferences.     



Inference from Samples

The tools from probability and the 

assumptions we will make allow us to say 

how certain we are about the estimates we 

calculate with our sample.



Assumptions That Allow Us to Get to Inference, 

that Allow Us to Say How Certain We Are

Most important assumptions

• All of the observations come from distributions 

with the same variance.

• Knowing something about one Y does not give 

us information about another Y.



Observations coming from distributions 

with the same variance?

What if some observations are highly predictable and others are less 
predictable?

The classic case involves asking how expenditures on meals depend 
on income.   We would have smaller residuals for low income 
people than for high-income people.

There are solutions to this problem – a problem called 
“heteroskedasticity”, the most straightforward of which is to use 
White’s standard errors or heteroskedastic-consistent standard 
errors.  I include citations that cover this method.



Knowing something about one 

observation of y tells us something about 

another observation of Y

Examples of this:

Time

Space – countries, neighborhoods

Families

Schools

There are solutions for this problem -- a problem called 
“autocorrelation”-- and I’ll include references that cover 
these solutions.



Can you think of other examples 

from your own work of…

• Times when the observations do not come 

from distributions with the same variance?

• Times when knowing something about one 

Y gives us information about another Y?



The key to inference is the 

sampling distribution.



The Sampling Distribution

• Source:  Wonnacott and Wonnacott, 1990.



Sampling Distribution of the Mean

• Source:  Wonnacott and Wonnacott, 1990.



Sampling distribution

• The slope and intercept are draws from a 

distribution.  That distribution comes from 

estimates calculated on repeated samples.

• Central Limit Theorem, or the Normal 

Approximation Rule, helps us describe 

those distributions.



Central Limit Theorem

If we take random samples of size n from a 

population with a given mean and a given 

standard deviation, then, as n gets large, 

the mean of X approaches the Normal 

distribution, with the same mean as the 

population and with a standard deviation 

of the population standard deviation over 

the square root of n.   



Sampling Distributions and 

Sample Sizes
• Hanushek and Jackson.



We’ll estimate the standard errors of our 

regression coefficients. 

These standard errors are our measures of the 

variability of b and a.  They are a function of the 

variability of y and x and of the sample size.  

For example, when there’s little variance in x, we 

have little certainty about b, and our estimates of 

the variability of b will be quite large.   When our 

samples are small, our estimate of the variability 

of our coefficients will be larger.



The Value of Small Standard 

Errors

These standard errors describe our estimate of the 
sampling distribution of b and a.

They give us the ability to describe a 95% 
confidence interval around b.  

They let us say how certain we are about the 
estimates we’ve calculated from our sample.



The t-distribution

In practice, because our sample sizes won’t 

be exceedingly large and because we 

won’t know sigma in advance, we will 

assume that our estimates are drawn from 

a t-distribution instead of from a Normal 

distribution.  With large sample sizes, t is 

not distinguishable from a Normal 

distribution.



In Practice

We will often measure our certainty about the 

coefficient with a t-statistic, based on a t 

distribution.

t = our estimate of the coefficient

the standard error of the coefficient.

When t is large, it suggests we are more certain 

that our estimate is different from 0.



The value of t

The value of t gives us a measure of 

whether there’s a lot of variability or a little 

in the relationship between y and x in our 

sample.  Of course, the larger our sample 

size, the more certain we can be about our 

inferences.  



Critical Values of t

For a 95% confidence interval. 

Sample Critical Value

Size of t

10 2.23

100 1.98

Infinity 1.96



When the absolute value of t for our coefficient is 

greater than or equal to the critical value of t at a 

particular level of confidence, we have a 

measure of how certain we are about the 

coefficient at hand.

Conventionally, we use a 95% confidence interval, 

or a .05 level of statistical significance.  Often, 

we also report the level of statistical significance.



P value

• The p value helps us understand how 

likely it is to get the sample estimate we 

got if the null hypothesis (often of no 

effect) is true.

• It gives us a sense of the probability of 

seeing results as or more extreme than 

those we actually observe if the effect is 

actually 0.



Drawing Inferences

Predicting Earnings, Ordinary Least Squares

Variable Coefficient S.E.  t

Height 1563.138 133.448 11.713

Constant -84078.32 8901.098 -9.446

N = 1379

R-squared = .09
Source:  Gelman and Nolan 2002.



Questions to ask

• On what scales are our variables 

measured?

• Are our coefficients statistically significant?

• Are our coefficients substantively 

significant?

• Are there omitted variables that will affect 

our estimates of the coefficients at hand?



A Multivariate Model

Predicting Earnings in US Dollars,

Ordinary Least Squares

Variable Coefficient S.E.  t p-value

Height in inches 550.5448 184.57 2.983 .003

Woman -11254.57 1448.892 -7.768 .000

Constant -84078.32 8901.098 -9.446 .908

N = 1379

R-squared = .13
Source;  Gelman and Nolan, 2002.



Another Multivariate Model

Predicting Hours Working, Ordinary Least Squares Regression

Women Men

Education 4.26*** 1.92***

(.60) (.47)

Marriage -0.53* 1.17***

(.25) (.24)

Pre-school Children -2.25*** 1.54***

(.33) (.32)

School-aged Children -0.14 1.65***

(.29) (.28)

N 1288 1177

Adjusted R-Squared .30 .44

Source:  Burns, Schlozman, and Verba.

* p<.05; ** p<.01; *** p < .001.  Controlling for other variables.



Predicting Free Time

Women Men

Marriage -0.86*** -.32***

Pre-school -2.29*** -.53***

Children

School-aged -0.88*** -.53***

Children

Source:  Burns, Schlozman, and Verba 2001.

Controlling for education, activity in high school, race or ethnicity, 
age, hours on the job, job level, and citizenship

*Coefficient significant at < .05.

**Coefficient significant at < .01.

***Coefficient significant at < .001.



Predicting Level of Education (US, from GSS data)

1972 2006

Parents’ Education .379* .415*

(.028) (.015)

Rural -.029* -.029*

(.013) (.013)

Age 26-35 .024 .035*

(.019) (.011)

Age 36-45 .001 .025*

(.015) (.011)

Age 46-55 -.006 .028*

(.018) (.011)

Age 56-65 -.040* .042*

(.019) (.012)

Age 66 and older -.074* .058*

(.020) (.010)

Female -.005 -.011

(.010) (.007)

R-squared .312 .293

N 597 1379



Interpreting coefficients

Ask the question:  

Compared to what?



Another Multivariate Model

• Source:  Neuenschwander, Vida, Garrett, and Eccles.  2007.

Predicting how good a student believes she or he is at 
math, ordinary least squares (n=528 children)

Coefficient    

Parents’

Educational .22*

Expectations for

Their Child

The Child’s Prior .28*

Math Grades



A diagram of a series of 

coefficients in a model
Source:  Neueschwander, Vica, Garett, and Eccles 2007.



Omitted Variables

Number of hours of TV watching per day

B (s.e.) t p value

Education -2.02  (.22) -9.29 .0000

Age .14  (.21) .66  .5124

Age over 

65 .75  (.19) 4.04 .0001

Adjusted R-squared .06

N 2494



Omitted variables

Number of hours of TV watching per day

B (s.e.) t p value

Education -1.55  (.21) -7.35 .0000

Age -.15  (.20) -.74  .4588

Age over 

65 -.06  (.19) -.008 .7633

In the 

workforce -1.57  (.11) -14.466 .0000

Adjusted R-squared .13

N 2494



Class Exercise

• Source:  Wonnacott and Wonnacott.



Know your data

Know how it was collected.

Know what the data look like.

Know how the variables are distributed.

Know what the residuals look like.

Explore the difference between observations 

your model predicts well and cases your 

model doesn’t predict well.



Regression is Resilient

We are fortunate to have a tool like ordinary 
least squares regression.  It is a sturdy 
tool, and yields useful estimates even in 
the face of mild deviations from 
assumptions.

Not all tools of estimation have this 
resilience.



Challenges to Regression’s 

Resilience

Three things that make the Central Limit 

Theorem not hold:

– Non-random samples.

– Heteroskedasticity, varying variances of Y.

– Autocorrelation, the lack of independence of 

our observations of Y.



Without the Central Limit 

Theorem

We cannot estimate the standard errors well 

that allow us to move from our samples to 

describe the population.



The other challenge to 

regression’s resilience

Model specification, or what variables we 

choose to include in our models and why.



We Have Tools

• We have tools to use to detect the 

problems we just talked about.

• And we have tools to use to correct those 

problems.

• We just have to know what sorts of 

problems we could encounter.



For further reading

Wonnacott and Wonnacott.  1990. Introductory 

Statistics for Business and Economics, 4th

edition.  John Wiley and Sons.  

For those comfortable with more mathematics:

William H. Greene.  2008.  Econometric Analysis, 

6th edition.  Prentice-Hall.



Further Reading

Gelman and Nolan. 2002.  Teaching 

Statistics.  Oxford:  Oxford University 

Press.


